GG Tauri A: dark shadows on the ringworld

Author:

Brauer R.ORCID,Pantin E.,Di Folco E.,Habart E.,Dutrey A.,Guilloteau S.

Abstract

Context. With its high complexity, large size, and close distance, the ringworld around GG Tau A is an appealing case to study the formation and evolution of protoplanetary disks around multiple star systems. However, investigations with radiative transfer models usually neglect the influence of the circumstellar dust around the individual stars. Aims. We investigate how circumstellar disks around the stars of GG Tau A influence the emission that is scattered at the circumbinary disk and if constraints on these circumstellar disks can be derived. Methods. We performed radiative transfer simulations with the POLArized RadIation Simulator (POLARIS) to obtain spectral energy distributions and emission maps in the H-Band (near-infrared). Subsequently, we compared them with observations to achieve our aims. Results. We studied the ratio of polarized intensity at different locations in the circumbinary disk. We conclude that the observed scattered-light near-infrared emission is best reproduced if the circumbinary disk lies in the shadow of at least two coplanar circumstellar disks surrounding the central stars. This implies that the inner wall of the circumbinary disk is strongly obscured around the midplane, while the observed emission is actually dominated by the upper-most disk layers. In addition, the inclined dark lane (“gap”) on the western side of the circumbinary disk, which has been a stable, nonrotating, feature for approximately 20 yr, can only be explained by the self-shadowing of a misaligned circumstellar disk surrounding one of the two components of the secondary close-binary star GG Tau Ab.

Funder

Labex P2IO

Programme National de Physique Stellaire (PNPS) of Institut National des Sciences de l'Univers, Centre National de la Recherche Scientifique co-funded by CEA and CNES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3