The bi-modal 7Li distribution of the Milky Way’s thin-disk dwarf stars

Author:

Roca-Fàbrega S.ORCID,Llorente de Andrés F.,Chavero C.ORCID,Cifuentes C.,de la Reza R.

Abstract

Context. The lithium abundance, A(Li), in stellar atmospheres suffers from various enhancement and depletion processes during the star’s lifetime. While several studies have demonstrated that these processes are linked to the physics of stellar formation and evolution, the role that Galactic-scale events play in the galactic A(Li) evolution is not yet well understood. Aims. We aim to demonstrate that the observed A(Li) bi-modal distribution, in particular in the FGK-dwarf population, is not a statistical artefact and that the two populations connect through a region with a low number of stars. We also want to investigate the role that Galactic-scale events play in shaping the A(Li) distribution of stars in the thin disk. Methods. We use statistical techniques along with a Galactic chemical evolution model for A(Li) that includes most of the well-known 7Li production and depletion channels. Results. We confirm that the FGK main-sequence stars belonging to the Milky Way’s thin disk present a bi-modal A(Li) distribution. We demonstrate that this bi-modality can be generated by a particular Milky Way star formation history profile combined with the stellar evolution’s 7Li depletion mechanisms. We show that A(Li) evolution can be used as an additional proxy for the star formation history of our Galaxy.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The evolution of lithium in FGK dwarf stars;Astronomy & Astrophysics;2024-04

2. Measuring the physical imprints of gas flows in galaxies;Astronomy & Astrophysics;2023-10

3. Searching for the nature of stars with debris disks and planets;Astronomy & Astrophysics;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3