Analysis of apsidal motion in eclipsing binaries using TESS data

Author:

Claret A.,Giménez A.,Baroch D.,Ribas I.,Morales J. C.,Anglada-Escudé G.

Abstract

Context. The measurement of apsidal motion rates in eccentric eclipsing binaries is a unique way to gain insight into the internal structure of stars through the internal density concentration parameter, k2. High-quality physical parameters of the stellar components, together with precise measurements of the advance of the periastron, are needed for the comparison with values derived from models. Aims. As a product of the Transiting Exoplanet Survey Satellite (TESS) mission, high-precision light curves of a large number of eclipsing binaries are now available. Using a selection of well-studied, double-lined eccentric eclipsing binary systems, we aim to determine their apsidal motion rates and place constraints on the internal density concentration and compare with the predictions from state-of-the-art theoretical models. Methods. We computed times of minimum light using the TESS light curves of 34 eclipsing binaries with precise absolute parameters. We used the changing difference over time between primary and secondary eclipse timings to determine the apsidal motion rate. To extend the time baseline, we combined the high-precision TESS timings with reliable archival data. On the other hand, for each component of our sample of double-lined eclipsing binaries, we computed grids of evolutionary stellar models for the observed stellar mass exploring ranges of values of the overshooting parameter fov, the mixing-length parameter, and the metallicity. To find the best solution for the two components we adopted a χ2 statistic to infer the optimal values of the overshooting parameter and the mixing-length parameter. The theoretical internal structure constants to be compared with the observed values were calculated by integrating the differential equations of Radau for each stellar model. Results. We have determined the apsidal motion rate of 27 double-lined eclipsing binaries with precise physical parameters. The obtained values, corrected for their relativistic contribution, yield precise empirical parameters of the internal stellar density concentration. The comparison of these results with the predictions based on new theoretical models shows very good agreement. Small deviations are identified but remain within the observational uncertainties and the path for a refined comparison is indicated.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3