Abstract
The far-infrared radio correlation (FIRC) is one of the strongest correlations in astronomy, yet a model that explains this comprehensively does not exist. The new LOFAR all Sky Survey (LoTSS) deep field, ELAIS-N1, allows exploration of this relation in previously unexplored regions of parameter space of radio frequency (150 MHz), luminosity (L150 < 1024.7), redshift (z ∼ 1), and stellar mass M* < 1011.4. We present accurate deblended far-infrared (FIR) flux measurements with robust errors at 24, 100, 160, 250, 350, and 500 μm from Spitzer and the Herschel Space Observatory using XID+. We find that the FIRC has a strong mass dependence, the evolution of which takes the form qTIR(M*) = (2.00 ± 0.01)+(−0.22 ± 0.02)(log(M/M*)−10.05). This matches recent findings in regards to the star formation rate–radio luminosity relation at 150 MHz and results from radio observations in COSMOS at 1.4 GHz with the Jansky Very Large Array (JVLA). Our results provide tighter constraints on the low-redshift end of the FIRC and at lower frequency than the COSMOS observations. In addition, we find a mild evolution with redshift, with a best fit relation qTIR(z) = (1.94 ± 0.01)(1 + z)−0.04 ± 0.01. This evolution is shallower than that suggested by previous results at 150 MHz with the differences explained by the fact that previous studies did not account for the mass dependence. Finally, we present deblended FIR fluxes for 79 609 galaxies across the LoTSS deep fields: Boötes, ELAIS-N1, and Lockman Hole.
Funder
Science and Technology Facilities Council
Swiss National Science Foundation.
Polish National Science Centre
INAF
Ministero degli Affari Esteri e della Cooperazione Internazionale - Direzione Generale per la Promozione del Sistema Paese Progetto di Grande Rilevanza
John Harvard Distinguished Science Fellowship.
CNRSINSU,
Observatoire de Paris and Université d’Orléans, France;
BMBF
MIWF-NRW
MPG
Science Foundation Ireland
Department of Business, Enterprise and Innovation
NWO
Ministry of Science and Higher Education, Poland.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献