Investigating the detectability of hydrocarbons in exoplanet atmospheres with JWST

Author:

Gasman DannyORCID,Min MichielORCID,Chubb Katy L.ORCID

Abstract

Aims. We investigate at what abundances various hydrocarbon molecules (e.g. acetylene (C2H2), ethylene (C2H4), and methane (CH4)) become detectable when observing the atmospheres of various planets using the James Webb Space Telescope (JWST). Methods. We focused on atmospheric models based on the parameters of a small sample of planets: HD 189733b, HD 209458b (hot Jupiters orbiting bright stars); HD 97658b (a sub-Neptune/super-Earth orbiting a bright star); and Kepler-30c (a warm Jupiter orbiting a faint star). We computed model transmission spectra, assuming equilibrium chemistry and clear atmospheres for all planets apart from HD 189733b, where we also computed spectra with a moderate cloud layer included. We used the Bayesian retrieval package ARCiS for the model atmospheres, and simulated observed spectra from different instruments that will be on board JWST using the PandExo package. We subsequently ran retrievals on these spectra to determine whether the parameters input into the forward models, with a focus on molecular abundances, can be accurately retrieved from these simulated spectra. Results. We find that generally we can detect and retrieve abundances of the hydrocarbon species as long as they have a volume mixing ratio above approximately 1  × 10−7–1  × 10−6, at least for the brighter targets. There are variations based on planet type and instrument(s) used, and these limits will likely change depending on the abundance of other strong absorbers. We also find scenarios where the presence of one hydrocarbon is confused with another, particularly when a small wavelength region is covered; this is often improved when two instruments are combined. Conclusions. The molecules C2H2, CH4, and C2H4 will all be detectable with JWST, provided they are present in high enough abundances, and that the optimal instruments are chosen for the exoplanet system being observed. Our results indicate that generally a combination of two instruments, either NIRSpec G395M and MIRI LRS, or NIRCam F322W2 and MIRI LRS, are best for observing these hydrocarbons in bright exoplanet systems with planets of various sizes, with NIRSpec G395M and MIRI LRS the best option for the HD 189733b-like atmosphere with clouds included. The use of NIRSpec Prism is tentatively found to be best for fainter targets, potentially in combination with the MIRI LRS slit mode, although the target we test is too faint to draw any strong conclusions. Instrument sensitivity, noise, and wavelength range are all thought to play a role in being able to distinguish spectral features.

Funder

European Union's Horizon 2020 Research and Innovation Programme

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3