A survey on Hungaria asteroids involved in mean motion resonances with Mars

Author:

Forgács-Dajka E.ORCID,Sándor Zs.ORCID,Sztakovics J.

Abstract

Context. A region at the inner edge of the main asteroid belt is populated by the Hungaria asteroids. Among these objects, the Hungaria family formed as the result of a catastrophic disruption of the (434) Hungaria asteroid a few hundred million years ago. Due to the Yarkovsky effect, the fragments depending on their direction of rotation are slowly drifting inwards or outwards from the actual place of collision. Due to this slow drift, these bodies could approach the locations of the various outer-type mean-motion resonances (MMRs) with Mars. Aims. We aim to study the actual dynamical structure of Hungaria asteroids, which is primarily shaped by various outer-type MMRs with Mars. Moreover, we also seek connections between the orbital characteristics of Hungaria asteroids and their absolute magnitude. Methods. To map the resonant structure and dynamics of asteroids belonging to the Hungaria group, we used the FAst Identification of mean motion Resonances method, which can detect MMRs without the a priori knowledge of the critical argument. We also compiled stability maps of the regions around the MMRs by using the maximal variations in the asteroids’ eccentricities, semi-major axes, and inclinations. We numerically integrated the orbits of all asteroids belonging to the Hungaria group available in the JPL Horizon database together with the Solar System planets for one and ten million years. Results. Having studied the resonant structure of the Hungaria group, we find that several asteroids are involved in various MMRs with Mars. We identify both short- and long-term MMRs. Besides this, we also find a relationship between the absolute magnitude of asteroids and the MMR in which they are involved.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3