Theoretical computations on the efficiency of acetaldehyde formation on interstellar icy grains

Author:

Enrique-Romero JoanORCID,Ceccarelli Cecilia,Rimola Albert,Skouteris Dimitrios,Balucani NadiaORCID,Ugliengo PieroORCID

Abstract

Context. Interstellar grains are known to be important actors in the formation of interstellar molecules such as H2, water, ammonia, and methanol. It has been suggested that the so-called interstellar complex organic molecules (iCOMs) are also formed on the interstellar grain icy surfaces by the combination of radicals via reactions assumed to have an efficiency equal to unity. Aims. In this work, we aim to investigate the robustness or weakness of this assumption. In particular, we consider the case of acetaldehyde (CH3CHO), one of the most abundant and commonly identified iCOMs, as a starting study case. In the literature, it has been postulated that acetaldehyde is formed on the icy surfaces via the combination of HCO and CH3. Here we report new theoretical computations on the efficiency of its formation. Methods. To this end, we coupled quantum chemical calculations of the energetics and kinetics of the reaction CH3 + HCO, which can lead to the formation of CH3CHO or CO + CH4. Specifically, we combined reaction kinetics computed with the Rice-Ramsperger–Kassel–Marcus theory (tunneling included) method with diffusion and desorption competitive channels. We provide the results of our computations in the format used by astrochemical models to facilitate their exploitation. Results. Our new computations indicate that the efficiency of acetaldehyde formation on the icy surfaces is a complex function of the temperature and, more importantly, of the assumed diffusion over binding energy ratio f of the CH3 radical. If the ratio f is ≥0.4, the efficiency is equal to unity in the range where the reaction can occur, namely between 12 and 30 K. However, if f is smaller, the efficiency dramatically crashes: with f = 0.3, it is at most 0.01. In addition, the formation of acetaldehyde is always in competition with that of CO + CH4. Conclusions. Given the poor understanding of the diffusion over binding energy ratio f and the dramatic effect it has on the formation, or not, of acetaldehyde via the combination of HCO and CH3 on icy surfaces, model predictions based on the formation efficiency equal to one should to be taken with precaution. The latest measurements of f suggest f = 0.3 and, if confirmed for CH3, this would rule out the formation of acetaldehyde on the interstellar icy surfaces. We recall the alternative possibility, which was recently reviewed, that acetaldehyde could be synthesized in the gas phase starting from ethanol. Finally, our computations show the paramount importance played by the micro-physics involved in the interstellar surface chemistry and call for extensive similar studies on different systems believed to form iCOMs on the interstellar icy surfaces.

Funder

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3