Strong dependence of Type Ia supernova standardization on the local specific star formation rate

Author:

Rigault M.ORCID,Brinnel V.,Aldering G.,Antilogus P.,Aragon C.,Bailey S.,Baltay C.,Barbary K.,Bongard S.,Boone K.,Buton C.,Childress M.,Chotard N.,Copin Y.,Dixon S.,Fagrelius P.,Feindt U.,Fouchez D.,Gangler E.,Hayden B.,Hillebrandt W.,Howell D. A.,Kim A.,Kowalski M.,Kuesters D.,Leget P.-F.,Lombardo S.,Lin Q.,Nordin J.,Pain R.,Pecontal E.,Pereira R.,Perlmutter S.,Rabinowitz D.,Runge K.,Rubin D.,Saunders C.,Smadja G.,Sofiatti C.,Suzuki N.,Taubenberger S.,Tao C.,Thomas R. C.

Abstract

As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SN Ia) for cosmology, we have statistically classified a large sample of nearby SNe Ia into those that are located in predominantly younger or older environments. This classification is based on the specific star formation rate measured within a projected distance of 1 kpc from each SN location (LsSFR). This is an important refinement compared to using the local star formation rate directly, as it provides a normalization for relative numbers of available SN progenitors and is more robust against extinction by dust. We find that the SNe Ia in predominantly younger environments are ΔY = 0.163 ± 0.029 mag (5.7σ) fainter than those in predominantly older environments after conventional light-curve standardization. This is the strongest standardized SN Ia brightness systematic connected to the host-galaxy environment measured to date. The well-established step in standardized brightnesses between SNe Ia in hosts with lower or higher total stellar masses is smaller, at ΔM = 0.119 ± 0.032 mag (4.5σ), for the same set of SNe Ia. When fit simultaneously, the environment-age offset remains very significant, with ΔY = 0.129 ± 0.032 mag (4.0σ), while the global stellar mass step is reduced to ΔM = 0.064  ±  0.029 mag (2.2σ). Thus, approximately 70% of the variance from the stellar mass step is due to an underlying dependence on environment-based progenitor age. Also, we verify that using the local star formation rate alone is not as powerful as LsSFR at sorting SNe Ia into brighter and fainter subsets. Standardization that only uses the SNe Ia in younger environments reduces the total dispersion from 0.142  ±  0.008 mag to 0.120  ±  0.010 mag. We show that as environment-ages evolve with redshift, a strong bias, especially on the measurement of the derivative of the dark energy equation of state, can develop. Fortunately, data that measure and correct for this effect using our local specific star formation rate indicator, are likely to be available for many next-generation SN Ia cosmology experiments.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3