HdC and EHe stars through the prism of Gaia DR3

Author:

Tisserand P.ORCID,Crawford C. L.ORCID,Soon J.ORCID,Clayton G. C.ORCID,Ruiter A. J.ORCID,Seitenzahl I. R.ORCID

Abstract

Context. Upon its release the Gaia DR3 catalogue has led to tremendous progress in multiple fields of astronomy by providing the complete astrometric solution for nearly 1.5 billion sources. Aims. We analysed the photometric and astrometric results for Hydrogen-deficient Carbon (HdC), Extreme Helium (EHe), and DYPer type stars to identify any potential biases. This analysis aimed to select stars suitable for kinematic and spatial distribution studies. Methods. We investigated the information obtained from the Gaia image parameter determination (IPD) process, which was cross-matched with Gaia light curves. One main objective was to understand the impact of photometric declines in R Coronae Borealis (RCB) stars on Gaia astrometry. Results. Based on the evidence gathered, we have reached the conclusion that the astrometric fits for numerous RCB stars, including R CrB itself, are not valid due to the Gaia point spread function (PSF) chromaticity effect in both shape and centroid. The astrometric results of all stars with a significant time-dependent colour variation should be similarly affected. RCB stars might thus be promising sources to correct this effect in future Gaia releases. Furthermore, after validating the Gaia astrometric results for 92 stars, we observed that the majority of HdC and EHe stars are distributed across the three old stellar structures, the thick disk, the bulge and the halo. However, we have also uncovered evidence indicating that some HdC and EHe stars exhibit orbits characteristic of the thin disk. This is also particularly true for all DYPer type stars under study. Finally, we have produced a list of star memberships for each Galactic substructure, and provided a list of heliocentric radial velocities and associated errors for targets not observed by Gaia DR3. Conclusions. We are beginning to observe a relationship between kinematics, stellar population, and metallicity in RCB and EHe stars. That relation can be explained, within the double degenerate scenario, by the large range in the delay time distribution expected from population synthesis simulations, particularly through the HybCO merger channel.

Funder

Australian Research Council

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3