Long-term dynamics around the Didymos–Dimorphos binary asteroid of boulders ejected after the DART impact

Author:

Langner K.ORCID,Marzari F.ORCID,Rossi A.ORCID,Zanotti G.ORCID

Abstract

Context. In 2022, the DART mission spacecraft impacted the asteroid Dimorphos, the secondary body of the binary Didymos system, ejecting a large number of dust particles, rocks and boulders. The ESA Hera mission will reach the system in 2026 for post-impact studies and a possible detection of orbiting fragments. Aims. We aim to investigate the long-term dynamics of the large boulders ejected by DART to test if any of these objects survive in orbit until the arrival of the Hera mission. Methods. To model the dynamics of the boulders, we used a numerical model that includes the gravity of non-spherical Didymos and Dimorphos, the solar gravity, and the radiation pressure. The SPICE kernels are used to define the correct reference frame for the integrations. Results. The dynamics of the boulders is highly chaotic, and 1% of the initial boulders survive at least for four years on quasi-stable orbits. These orbits are characterised by wide oscillations in eccentricity in antiphase with those in inclination (including spin flips), a mechanism similar to the Kozai one. This behaviour may protect these bodies from close encounters with both asteroids. We also computed the distribution on the surfaces of the asteroids of sesquinary impacts, which may influence the dust emission (after the initial DART impact) and the surface composition of the asteroids. Conclusions. The probability of observing boulders by the mission Hera is small but non-negligible, and an almost constant flux of escaping boulders is expected in the coming years since their lifetime after the DART impact covers a large time interval. Most re-impacts on Dimorphos occur in the hemisphere opposite the impact site, preferentially close to the equatorial plane.

Funder

Agenzia Spaziale Italiana

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3