Stellar halo density with LAMOST K and M giants

Author:

López-Corredoira M.ORCID,Tang X.-C.ORCID,Tian H.ORCID,Wang H.-F.ORCID,Carraro G.ORCID,Liu C.ORCID

Abstract

Aims. We derive the morphology of the stellar component in the outer halo volume, and search for possible overdensities due to substructures therein. Methods. We made use of some of the data releases of the spectroscopic survey LAMOST DR8-DR9 in tandem with distance determinations for two subsamples, that is, of K-giants and M-giants, respectively, making up 60 000 stars. These distance are obtained through Bayesian techniques that derive absolute magnitudes as a function of measured spectroscopic parameters. Our calculation of the density from these catalogues requires: (1) derivation of the selection function; and (2) a correction for the convolution of the distance errors, which we carried out with Lucy’s inversion of the corresponding integral equation. Results. The stellar density distribution of the outer halo (distance to the Galactic centre, rG, of between 25 and 90 kpc) is a smooth monotonously decreasing function with a dependence of approximately ρ ∝ rG−n, with n = 4.6 ± 0.4 for K-giants and n = 4.5 ± 0.2 for M-giants, and with a insignificant oblateness. The value of n is independent of the angular distance to the Sagittarius tidal stream plane, which is what would be expected if such a stream did not exist in the anticenter positions or had a negligible imprint in the density distribution in the outer halo. Apart from random fluctuations or minor anomalies in some lines of sight, we do not see substructures superimposed in the outer halo volume within the resolution that we are using and limited by the error bars. This constrains the mass of over- and under-densities in the outer halo to be of ≲103M deg−2, whereas the total mass of the stellar halo, including inner and outer parts, is ∼7 × 108 M.

Funder

Chinese Academy of Sciences

MINECO

Beijing Natural Science Foundation

National Natural Science Foundation of China

Department of Physics and Astronomy of Padova University

National Key Research and Development Program of China

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3