Tomographic cross correlations between galaxy surveys and the CMB gravitational lensing potential

Author:

Shekhar Saraf ChandraORCID,Bielewicz PawełORCID

Abstract

Context. Upcoming surveys of the large-scale structure of our Universe will employ a large coverage area of about half of the sky and will significantly increase the observational depth. With these surveys, we will be able to cross-correlate cosmic microwave background (CMB) gravitational lensing and galaxy surveys divided into narrow redshift bins to map the evolution of the cosmological parameters with redshift. Aims. We study the effect of the redshift bin mismatch of objects that is due to photometric redshift errors in tomographic cross-correlation measurements. Methods. We used the code FLASK to create Monte Carlo simulations of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) and Planck CMB lensing convergence. We simulated log-normal fields and divided galaxies into nine redshift bins with the Gaussian and modified Lorentzian photometric redshift errors. To estimate the parameters, we used angular power spectra of CMB lensing and galaxy density contrast fields and the maximum likelihood estimation method. Results. We show that even with simple Gaussian errors with a standard deviation of σ(z) = 0.02(1 + z), the galaxy auto-power spectra in tomographic bins are offset by 2 − 15%. The estimated cross-power spectra between galaxy clustering and CMB lensing are also biased, with smaller deviations < 5%. As a result, the σ8 parameter deviates between 0.2 − 1.2σ due to the redshift bin mismatch of the objects. We propose a computationally fast and robust method based on the scattering matrix approach to correct for the redshift bin mismatch of the objects. Conclusions. The estimates of the parameters in tomographic studies such as the linear galaxy bias, the cross-correlation amplitude, and σ8 are biased due to the redshift bin mismatch of the objects. The biases in these parameters are alleviated with our scattering matrix approach.

Funder

Ministerstwo Edukacji i Nauki

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3