Abstract
As a special rolling method, angular rolling can meet various gauge demands of customized production. Due to the asymmetry of angular rolling, the rolling forces on the two sides of the roll system are different and the thickness distribution of the plate will be complex. To accurately obtain the thickness distribution and predict the rolling force during the angular rolling process, a mathematical model based on the influence function method is developed. An experiment is also adopted to validate the results of the rolling force. The results show that the change in the total rolling force comprises three stages: increasing, stable, and decreasing. During most of the rolling time, the rolling forces on the two sides of the mill are different. Then the predicted results of the rolling force are validated by experiment. After the first pass of angular rolling, a serious wedge appears at the head and tail ends of the plate. But when the angular rolling is finished, the wedge has almost disappeared. Considering the short calculation time, this model can be applied in the actual production process for making effective shape control strategies and flexible rolling schedules to meet various gauge demands of customized production.
Funder
National Natural Science Foundation of China
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献