Abstract
The increasing ecological awareness and stringent requirements for environmental protection have led to the development of water lubricated journal bearings. For the investigation of water-lubricated journal bearings, a new structured mesh movement algorithm for the CFD model is developed and based on this method, the nonlinear transient hydrodynamic force model is established. Then, with consideration of velocity perturbation, a method to determine dynamic coefficients and linear hydrodynamic forces is promoted. After validation of static equilibrium position and stiffness coefficients, a comparative linear and nonlinear hydrodynamic force analysis of multiple grooves water-lubricated journal bearings (MGWJBs) is conducted. The calculation results indicate that the structured mesh movement algorithm is suitable for the dynamic characteristics investigation of water-lubricated journal bearings. And the comparative study shows that there is a considerable difference between the linear and nonlinear hydrodynamic forces of MGWJBs. Further investigation should be carried to evaluate the dynamic responses of rotor supported by MGWJBs under difference force models.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Shandong, China
Fundamental Research Funds for the Central Universities
the Graduate Student Innovation Project, China university of petroleum
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献