Abstract
High-energy charged plasma particles pose a danger to space technology. The accumulation of charged particles on the body of the spacecraft generates discharges. Electrostatic discharge is a source of powerful electromagnetic interference that adversely affects the functioning of individual parts and entire systems. According to statistics, in about 30% of cases, the loss of satellites is the consequence of discharges. Before the operation of spacecraft, it is necessary to calculate the spreading of currents, which requires large machine and time costs. The article proposes original approaches for quickly constructing a picture of the spreading of currents over the surface of a spacecraft due to electrification. The key point of the first approach is the construction of a limited area for calculating the flow spreading. The calculation of transient currents will only take place in the electromagnetic compatibility area specified by the user without affecting the rest of it. The paper also developed new simplified computational schemes for a system of differential equations based on the Euler methods. With the help of new computational schemes, the time for calculating unknown quantities in a local area specified by the user has been reduced by several orders of magnitude compared to the calculation of unknown full models. The article presents conclusions on new computational schemes, indicating the complexity of their construction. The adequacy and accuracy of the new computational scheme are confirmed by a practical example.
Subject
Space and Planetary Science,Atmospheric Science
Reference16 articles.
1. Agapov VV, Marchenkov KV, Saenko VS, Sokolov AB. 2010. Method for determining the transformation coefficient converting surface structure currents into voltages in fragments of cable harnesses. RU Patent 2 378 657 C2.
2. Davis VA, Mandell MJ, Gardner BM, Mikellides IG, Neergaard Jacobs LF, Cooke DL, Minor J. 2004. Validation of NASCAP-2K Spacecraft-environment interactions calculations.
3. Plasma clouds in the magnetosphere
4. Enhanced Radiation Doses to High-Altitude Spacecraft during June 1980
5. The charging of spacecraft surfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献