The effects of estimating a photoionization parameter within a physics-based model using data assimilation

Author:

Hodyss DanielORCID,Allen Douglas R.ORCID,Tyndall DanielORCID,Caffrey PeterORCID,McDonald Sarah E.ORCID

Abstract

Data assimilation (DA) is the process of merging information from prediction models with noisy observations to produce an estimate of the state of a physical system. In ionospheric physics-based models, the solar ionizing irradiance is commonly estimated from a solar index like F10.7. The goal of this work is to provide the fundamental understanding necessary to appreciate how a DA algorithm responds to estimating an external parameter driving the model’s interpretation of this solar ionizing irradiance. Therefore, in this work we allow the DA system to find the F10.7 value that delivers the degree of photoionization that leads to a predicted electron density field that best matches the observations. To this end, we develop a heuristic model of the ionosphere along the magnetic equator that contains physics from solar forcing and recombination/plasma diffusion, which allows us to explore the impacts of strongly forced system dynamics on DA. This framework was carefully crafted to be both linear and Gaussian, which allows us to use a Kalman filter to clearly see how: (1) while recombination acts as a sink on the information in the initial condition for ionospheric field variables, recombination does not impact the information in parameter estimates in the same way, (2) when solar forcing dominates the electron density field, the prior covariance matrix becomes dominated by its leading eigenvector whose structure is directly related to that of the solar forcing, (3) estimation of parameters for forcing terms leads to a time-lag in the state estimate relative to the truth, (4) the performance of a DA system in this regime is determined by the relative dominance of solar forcing and recombination to that of the smaller-scale processes and (5) the most impactful observations on the electron density field and on the solar forcing parameter are those observations on the sunlit side of the ionosphere. These findings are then illustrated in a full physics-based ionospheric model using an ensemble Kalman filter DA scheme.

Funder

Office of Naval Research

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3