Abstract
In this paper, locally Lipschitz, regular functions are utilized to identify and remove infeasible directions from set-valued maps that define differential inclusions. The resulting reduced set-valued map is pointwise smaller (in the sense of set containment) than the original set-valued map. The corresponding reduced differential inclusion, defined by the reduced set-valued map, is utilized to develop a generalized notion of a derivative for locally Lipschitz candidate Lyapunov functions in the direction(s) of a set-valued map. The developed generalized derivative yields less conservative statements of Lyapunov stability theorems, invariance theorems, invariance-like results, and Matrosov theorems for differential inclusions. Included illustrative examples demonstrate the utility of the developed theory.
Funder
Air Force Office of Scientific Research
Air Force Research Laboratory
Office of Naval Research
National Science Foundation
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献