Author:
Gao Guozhu,Bai Junqiang,Li Guojun,Liu Nan,Li Yufei
Abstract
Angle of attack has impact on transonic flow filed and aerodynamic force, but most of current researches on flutter use zero angle hypothesis, which has no consideration about angle of attack. Therefore, we use unsteady Reynold Averaged Navier-Stokes (RANS) equation and structural dynamic equation to establish the time domain aeroelastic analysis method. The solution in time domain is the fourth-order implicit Adams linear multi-step method which is based on prediction-correction method. The numerical simulations were used to analyze the transonic flutter boundary of Isogai Case A Model which was based on zero angle condition and nonzero angle respectively. The simulation results show that the reduced flutter speed decreases as the preset angle of attack decreases between 0.73 and 0.76, which shows a 12.5% decrease of the flutter speed at the farthest. Nonzero angle makes the transonic dip weaker and wider than fully turbulent flow. Changing in angle of attack of 6°, the flutter speed in the deepest position of transonic dip has increased by 124% compared to the flutter speed of 0°. Therefore, when flutter characters of airfoil is analyzed, the effects of the initial angle of attack must be taken into account in order to analyze flutter boundary correctly. In other words, increasing the angle of attack offers a way to control the system in terms of delaying flutter.