Author:
Fan Kuan,Sun Chao,Liu Xionghou,Jiang Guangyu
Abstract
There is a class of methods based on transmission diversity smoothing by multiple-input multiple-output(MIMO) sonar called MIMO-TDS which is considered as one of the most effective methods for estimation of direction-of-arrival(DOA) using MIMO sonar systems. MIMO-TDS produced by orthogonal signal transmission for active sonar can be immediately implemented with high resolution algorithms such as MVDR to estimate the direction of received signals. However, the orthogonal transmission mode of MIMO-TDS is doomed to a loss of transmission array gain indirectly leading to the problem that the echoes are not equipped with as high SNR as enough for an accurate target localization, especially in scenarios in which the targets are far away from array. In order to solving the "low SNR" problem, a solution using all transmitted signals simultaneously to design a joint matched-filter intended for received signal is proposed to improve the performance of MIMO-TDS, which is inspired by the match-filtering concept of "MIMO sonar virtual array method" simplified as MIMO-VA. And accordingly, the unit impulse response function of proposed joint matched-filter is the equivalent of linear sum of all orthogonal transmitted signals and the modified MIMO-TDS is named as "joint matched-filtering MIMO sonar transmission diversity smoothing DOA estimation method", which could be simplified as MIMO-TDS-MF. The characteristic of proposed method is analyzed theoretically and compared to MIMO-TDS and MIMO-VA in this paper:Compared with MIMO-TDS, the proposed method not only retains the advantage of transmission diversity smoothing but also improves the SNR by joint match-filtering; What's more, compared with MIMO-VA, MIMO-TDS-MF is equipped with substantially less computation than the former due to an employment of much fewer matched-filters and is in possession of a superior robustness to that of MIMO-VA. Numerical experiments demonstrate the efficiency of proposed MIMO-TDS-MF.
Reference14 articles.
1. Li Qihu.
Sonar Signal Processing Theory[M].
Beijing:
Science Press,
2012
(in Chinese)
2. Sun Chao.
Underwater Multi-Sensor Array Signal Processing[M].
Xi'an:
Northwestern Polytechnical University Press,
2007
(in Chinese)
3. Van Trees H L.
Optimum Array Processing:Part Ⅳ of Detection, Estimation and Modulation Theory[M].
New York, NY, USA:
John Wiley & Sons,
2002
4. Li J, Stoica P.
MIMO Radar Signal Processing[M].
Hoboken, NJ, USA:
Wiley-IEEE Press,
2008
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献