Fisher-KPP dynamics in diffusive Rosenzweig–MacArthur and Holling–Tanner models

Author:

Cai Hong,Ghazaryan AnnaORCID,Manukian Vahagn

Abstract

We prove the existence of traveling fronts in diffusive Rosenzweig–MacArthur and Holling–Tanner population models and investigate their relation with fronts in a scalar Fisher-KPP equation. More precisely, we prove the existence of fronts in a Rosenzweig–MacArthur predator-prey model in two situations: when the prey diffuses at the rate much smaller than that of the predator and when both the predator and the prey diffuse very slowly. Both situations are captured as singular perturbations of the associated limiting systems. In the first situation we demonstrate clear relations of the fronts with the fronts in a scalar Fisher-KPP equation. Indeed, we show that the underlying dynamical system in a singular limit is reduced to a scalar Fisher-KPP equation and the fronts supported by the full system are small perturbations of the Fisher-KPP fronts. We obtain a similar result for a diffusive Holling–Tanner population model. In the second situation for the Rosenzweig–MacArthur model we prove the existence of the fronts but without observing a direct relation with Fisher-KPP equation. The analysis suggests that, in a variety of reaction–diffusion systems that rise in population modeling, parameter regimes may be found when the dynamics of the system is inherited from the scalar Fisher-KPP equation.

Funder

National Science Foundation

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3