Author:
Pattie R.W.,Callahan N.B.,Cude-Woods C.,Adamek E.R.,Adams M.,Barlow D.,Blatnik M.,D. Bowman,Broussard L.J.,Clayton S.,Currie S.,Dees E.B.,Ding X.,Fellers D.,Fox W.,Fries E.,Gonzalez F.,Geltenbort P.,Hickerson K.P.,Hoffbauer M.A.,Hoffman K.,Holley A.T.,Howard D.,Ito T.M.,Komives A.,Liu C.Y.,M. Makela,Medina J.,Morley D.,Morris C.L.,O'Connor T.,Penttilä S.I.,Ramsey J.C.,Roberts A.,Salvat D.,Saunders A.,Seestrom S.J.,Sharapov E.I.,Sjue S.K.L.,Snow W.M.,Sprow A.,Vanderwerp J.,Vogelaar B.,P.L. Walstrom,Wang Z.,Weaver H.,Wexler J.,Womack T.L.,Young A.R.,Zeck B.A.
Abstract
The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τn = 877.7s (0.7s)stat (+0.4/−0.2s)sys. We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ.