Research activities and progress on the long pulse ECRH launcher for EAST

Author:

Wang Xiaojie,Liu Fukun,Wei Wei,Tang Yunying,Li Bo,Zhang Liyuan,Xu Handong,Wu Dajun,Shan Jiafang,Hu Huaichuan,Wang Jian,Wu Zege,Ma Wendong,Zhang Jian,Li Miaohui,Zhang Yang,Liu Yong,Liu Yong,Liu Yong,Liu Yong,

Abstract

A long pulse Electron Cyclotron Resonance Heating (ECRH) system is developed on EAST tokamak for plasma heating and current profile tailoring. The ECRH system is designed to operate at 140GHz and to inject 4MW CW power. With respect to the physical objectives of the newly built ECRH system, a quasi-optical launcher is designed to inject 4MW continuous wave into plasma through an equatorial port. Gaussian beams delivered from evacuated corrugation waveguides will be focused and reflected by high thermal conductive metal mirrors, and then steered by using push-rod steering mechanism with entire scanning range of ±25° toroidally and over 30° poloidally in plasma cross section. The mirrors are carefully designed with mega watts power handling capability and optimum optical characteristics. The performance of steering mechanism has been tested before installation, an open-loop control system for ECRH launcher has been implemented for required mirror movement and proper polarization between plasma discharges. This paper will present the overall design and progress of the launcher, along with the performance in EAST campaigns. Considerations and possible upgrade of the design features relevant to long pulse operation are discussed.

Publisher

EDP Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3