Comparative studies of various types of transmission lines in the frequency range 70 GHz 1 THz for ITER ECE diagnostic

Author:

Kumar Ravinder,Danani S.,Pandya H.K.B.,Vaghashiya P.,Udintsev V.S.,Taylor G.,Austin M.E.,Kumar Vinay

Abstract

In ITER, an Electron Cyclotron Emission (ECE) diagnostic is planned to measure the electron temperature by measuring the cyclotron radiation in the frequency range of 70-1000 GHz. The cyclotron radiation is usually of low power and needs to be transported with low attenuation over a long distance of ~ 43 m, through a suitable transmission system. Pertaining to long distance, the transmission system will consist of straight waveguide sections, miter bends and waveguide joints. Low power, low loss transmission in a broadband frequency range over long distance makes the design of the transmission system challenging. To arrive at a suitable transmission system, attenuation measurements of three types of transmission lines (TLs) have been performed i.e. circular smooth walled, corrugated and dielectric coated waveguide. A polarizing Michelson interferometer based on Martin-Puplett design has been used to measure the spectrum from waveguide set ups and liquid nitrogen has been used as the black body radiation source. The measured spectrum shows atmospheric water vapour absorption lines in all types of TLs. The preliminary measurement shows that the attenuation of smooth walled waveguide is found to be comparable to corrugated waveguide up to ~ 600GHz and better than corrugated waveguide above 600 GHz for the chosen set of experimental conditions. Further, to avoid water absorption lines, a smooth walled TL is evacuated up to rough vacuum (~10-2mbar) and it was observed that the attenuation is decreased and overall transmission is improved.

Publisher

EDP Sciences

Reference5 articles.

1. Udintsev V. S. et al., “Progress in ITER ECE Diagnostic Design and integration,” in this workshop, Griefswald, 2018.

2. Pandya H. B., Austin M.E., Eliis R.F., Rev. Sci. Instrum., vol. 84, no. 103505, 2013.

3. Kumar Ravinder et al., “Fabrication and characterization of TL for ITER ECE Diagnostics,” in National Symposium on Plasma Science & Technology (http://www.ipr.res.in/plasma-2017/), Gandhinagar, 2017.

4. Pandya H. B. et al., “Characterization of the Prototype Michelson Interferometer for the ITER ECE Diagnostic system,” in National Symposium on Plasma Science & Technology, Gandhinagar, 2017.

5. http://www.eccosorb.com/

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3