Reconstruction of high energy thunderstorm radiation effects on soil matrix using Monte Carlo simulations

Author:

Ruban Yuliia,Ploc Ondrej,Šlegl Jakub,Chvátil David,Světlík Ivo,Tomášková Lenka,Sihver Lembit

Abstract

Due to their electromagnetic properties, thunderclouds can act as natural particle accelerators. Electrons accelerated in the thunderclouds can reach energies up to tens of MeV. Large populations of high energetic electrons formed by avalanche growth driven by electric fields in the Earth atmosphere called Relativistic Runaway Electron Avalanches (RREA) propagate through matter. They are decelerated and deflected in the course of collisions with particles in the atmosphere and emit gamma rays known as bremsstrahlung. The produced gamma rays can further trigger photonuclear reactions in the air and soil. This article reports on the work of project CRREAT (Research Centre of Cosmic Rays and Radiation Events in the Atmosphere), studying various lightning-related phenomena in various ways, both in situ and in the laboratory. This paper focuses on the simulation of the laboratory experiments at the Microtron accelerator in Prague and the neutron generator in Ostrava, where we irradiated various soil samples with 20 MeV electron beams. Experiments showed which radionuclides can be formed during the reactions of high-energy electrons with various soils and can be as targeted products in the thunderstorm radiation effect analysis. Radionuclides produced in exposed samples were measured using a highpurity germanium (HPGe) detector. A computer simulation was done with a simple source and sample geometry using the general-purpose 3D Monte Carlo code PHITS.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3