Machine-learning applied to the simulation of high harmonic generation driven by structured laser beams

Author:

Serrano Javier,Pablos-Marín José Miguel,Hernández-García Carlos

Abstract

High harmonic generation (HHG) is one of the richest processes in strong-field physics. It allows to up-convert laser light from the infrared domain into the extreme-ultraviolet or even soft x-rays, that can be synthesized into laser pulses as short as tens of attoseconds. The exact simulation of such highly non-linear and non-perturbative process requires to couple the laser-driven wavepacket dynamics given by the three-dimensional time-dependent Schrödinger equation (3D-TDSE) with the Maxwell equations to account for macroscopic propagation. Such calculations are extremely demanding, well beyond the state-of-the-art computational capabilities, and approximations, such as the strong field approximation, need to be used. In this work we show that the use of machine learning, in particular deep neural networks, allows to simulate macroscopic HHG within the 3D-TDSE, revealing hidden signatures in the attosecond pulse emission that are neglected in the standard approximations. Our HHG method assisted by artificial intelligence is particularly suited to simulate the generation of soft x-ray structured attosecond pulses.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3