NEUTRON DEPTH PROFILE CALCULATIONS USING ARTIFICIAL NEURAL NETWORKS

Author:

Hossny K.,Magdi S.,Nasr F.,Yasser Y.,Magdy A.

Abstract

Neutron depth profiling (NDP) is a non-destructive technique used for identifying the concentration of impurity isotopes below the sample surface. NDP is carried out by detection of the emitted charged particles resulting from bombarding the sample with neutrons. NDP specifies the isotopic concentration versus the sample depth for a few micrometers below the surface. The sample is bombarded inside a research reactor using a thermal neutron beam. Charged particles like alpha particles or protons are produced from the neutron induced reactions in the sample. Each neutron isotopic interaction produces a certain Q, indicating a specific kinetic energy for the emitted charged particle. As the charged particle travels through the sample to eject the surface, it loses energy to atoms (electrons) on its path. The charged particle energy loss holds information regarding the number of atoms by which the emitted particle passed, thus indicating its original depth. The purpose of this work is to check the capability of Artificial Neural Networks (ANNs) in predicting the boron concentration profile across a boro-silicate sample of thickness 3.5 μm divided into 10 layers. Each layer included different boron concentration than the other. Also, the boron concentration had the values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Training, validation, and test data were generated synthetically using MCNP6 in which the boron concentrations varied in the layer number from one sample to another. MCNP6 model consisted of a silicon barrier detector, boro-silicate sample, chamber body and an idealized thermal neutron source. The detector, sample, and the source were located in a voided chamber. The samples were irradiated with a 0.025 eV monoenergetic thermal neutron beam from a monodirectional disk source. To cover the whole area of the samples, the thermal neutron beam had a radius of 3 cm. The silicon detector active volume was modelled as a 100 μm thick and 3 cm radius facing the sample directly. The sample, beam, and the detector were placed on the same axis. Ten ANN regression models were developed, one for each layer boron concentration prediction where the input for each model was the alpha spectrum read by the detector, while the output was the boron concentration for each layer. Results showed regression values higher than 0.94 for all of the developed models. ANNs proved its capability of predicting the boron profile form the alpha spectrum read by the detector regarding neutron depth profiling in a boro-silicate samples.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3