Optimization of the magnetic core of a Linear Variable Differential Transducer

Author:

Van Nieuwenhove Rudi

Abstract

Research into materials and fuels for nuclear power reactors is carried out in so-called research reactors where various types of fuels and materials can be monitored online and in real time by in-core instruments. At the Halden reactor in Norway, online measurements such as cladding elongation, inner fuel rod pressure, fuel swelling, material creep and stress relaxation were based on Linear Variable Differential transducers (LVDT). The magnetic core of the standard LVDT core is made of silicon iron, encapsulated by an Inconel 600 or AISI 316L tube for corrosion protection. In the present study, we consider FeCrAl as magnetic core material. This material, which is currently also being investigated as accident tolerant fuel cladding material, is corrosion resistant in the chemical environment of PWR or BWR reactors and therefore doesn’t required an extra corrosion protection tube. As a result, the magnetic core diameter can be made larger, resulting in an increase of the LVDT sensitivity. In order to verify the various dependencies, the LVDT sensitivity was measured and compared to finite element calculations. The sensitivity of an LVDT is influenced by the magnetic permeability of the magnetic core, as well as by eddy current losses in this magnetic core. When the temperature changes, the eddy current losses in the core also change, resulting in a slight change of the LVDT sensitivity. It is shown that this effect is reduced when using FeCrAl as magnetic core material, instead of SiFe. On the other hand, the change in magnetic permeability with temperature for FeCrAl is larger than for SiFe. The overall combined effect results in a higher dependence of sensitivity for the FeCrAl core. Finally, using a solid magnetic core (without encapsulation) allows operation of the LVDT at higher gamma heating in the core of a reactor because of improved cooling by the surrounding water. This feature is relevant for operation in the Jules Horowitz Reactor, where the gamma heating in some locations can be up to 20 W/g.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3