Particle identification with machine learning in ALICE Run 3

Author:

Karwowska Maja,Jakubowska Monika,Graczykowski Łukasz,Deja Kamil,Kasak Miłosz

Abstract

The main focus of the ALICE experiment, quark–gluon plasma measurements, requires accurate particle identification (PID). The ALICE subdetectors allow identifying particles over a broad momentum interval ranging from about 100 MeV/c up to 20 GeV/c. However, a machine learning (ML) model can explore more detector information. During LHC Run 2, preliminary studies with Random Forests obtained much higher efficiencies and purities for selected particles than standard techniques. For Run 3, we investigate Domain Adaptation Neural Networks that account for the discrepancies between the Monte Carlo simulations and the experimental data. Preliminary studies show that domain adaptation improves particle classification. Moreover, the solution is extended with Feature Set Embedding and attention to give the network more flexibility to train on data with various sets of detector signals. PID ML is already integrated with the ALICE Run 3 Analysis Framework. Preliminary results for the PID of selected particle species, including real-world analyzes, are discussed as well as the possible optimizations.

Publisher

EDP Sciences

Reference28 articles.

1. Acharya S. et al. (ALICE), arXiv:2211.04384 [nucl-ex] (2022), 2211.04384

2. E. Botta (ALICE), Proceeding of the Fifth Annual Conference on Large Hadron Collider Physics (2017), 1709.00288

3. Particle identification in ALICE: a Bayesian approach

4. Ghosh A., Nachman B., Whiteson D., arXiv preprint arXiv:2105.08742 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3