Author:
Manzan E.,Regnier M.,Hamilton J-Ch.,Mennella A.,Errard J.,Zapelli L.,Torchinsky S.A.,Paradiso S.,Battistelli E.,Bersanelli M.,De Bernardis P.,De Petris M.,D’Alessandro G.,Gervasi M.,Masi S.,Piat M.,Rasztocky E.,Romero G.E,Scoccola C.G.,Zannoni M.,
Abstract
In the quest for the faint primordial B-mode polarization of the Cosmic Microwave Background, three are the key requirements for any present or future experiment: an utmost sensitivity, excellent control over instrumental systematic effects and over Galactic foreground contamination.
Bolometric Interferometry (BI) is a novel technique that matches them all by combining the sensitivity of bolometric detectors, the control of instrumental systematics from interferometry and a software-based, tunable, in-band spectral resolution due to its ability to perform band-splitting during data analysis (spectral imaging).
In this paper, we investigate how the spectral imaging capability of BI can help in detecting residual contamination in case an over-simplified model of foreground emission is assumed in the analysis. To mimic this situation, we focus on the next generation of ground-based CMB experiment, CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI, CMB-S4/BI, assuming that lineof-sight (LOS) frequency decorrelation is present in dust emission but is not accounted for during component separation.
We show results from a Monte-Carlo analysis based on a parametric component separation method (FGBuster), highlighting how BI has the potential to diagnose the presence of foreground residuals in estimates of the tensor-to-scalar ratio r in the case of unaccounted Galactic dust LOS frequency decorrelation.