Characterization of Low Level Wastes: a new design for calorimetric measurement

Author:

Galliez Kévin,Jossens Guillaume,Godot Alain,Mathonat Christophe

Abstract

Calorimetry is one of the best solutions to estimate the overall quantity of nuclear material on a wide range of masses, from a few milligrams up to kilograms of radionuclides, by measuring the overall thermal power due to the radioactive decay coming from the waste contained in a metallic drum or a different type of container. It has many advantages as it features a non-destructive method which remains independent of matrix effect or the chemical composition. Until now, calorimetry allows to measure at the lowest 0.5 to 1 mW for samples up to 385 liters. But nowadays, thanks to new technological breakthroughs, KEP-Technologies calorimeters are able to measure as low as 50 μW for 40 liters samples. The μLVC is based on a new design with twin cells, a new temperature regulation loop and a heat-flow measurement system inside a vacuum chamber (Patent deposit P005299 LA/VL). The μLVC is a differential heat-flow calorimeter for precise measurement independent of the residual fluctuations caused by environmental changes. The new calorimeter is an industrial product able to work in environmental conditions with wide temperature variations. The first results have shown a great improvement in the detection of very low thermal effect thanks to the thermal noise reduction. The paper presents the developments in Large Volume Calorimetry as a new tool for quantification of nuclear material to characterize Pu-Am samples, i-graphite, and low tritium samples with high precision and reliability.

Publisher

EDP Sciences

Reference4 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3