Double-humped barrier effects in the R-matrix for fitting of fissile isotope

Author:

Leal Luiz,Bouland Olivier,Noguère Gilles

Abstract

The Reich--Moore approach has been extensively used in the resolved resonance energy range (RRR) for a wide range of isotopes. The approximation was suggested for cross-section representation of fissile isotopes since experimental fission width distribution according to given resonance spin and parity showed that only a few degrees of freedom (DoF) was involved during the fission process. Experimental cross-section data in RRR were successfully reproduced, and the interference in fission channels were well described. The fitting of the fission cross-section data was done according to one or two fission channels for a given resonance spin (J) and parity (π). Using the two-fission channel representation, channel interference effects observed on cross-section data for fissile heavy isotopes were adequately treated but only on a phenomenological basis. Indeed, this approach is physically unsatisfactory since no fission penetrability is involved in reduced fission channel width evaluation, and therefore no actual connection between R-matrix fission channel widths and Aage Bohr transition fission channels can be made neither in terms of individual barrier height or by the shape. This paper intends to address model deficiency by including ‘fluctuating’ fission barrier penetrability as a function of resonance spin and parity.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3