Abstract
The concepts of Circular Economy and Industrial Symbiosis are nowadays considered by policy makers a key for the sustainability of the whole European Industry. However, in the era of Industry4.0, this results into an extremely complex scenario requiring new business models and involve the whole value chain, and representing an opportunity as well. Moreover, in order to properly consider the environmental pillar of sustainability, the quality of available information represents a challenge in taking appropriate decisions, considering inhomogeneity of data sources, asynchronous nature of data sampling in terms of clock time and frequency, and different available volumes. In this sense, Big Data techniques and tools are fundamental in order to handle, analyze and process such heterogeneity, to provide a timely and meaningful data and information interpretation for making exploitation of Machine Learning and Artificial Intelligence possible. Handling and fully exploiting the complexity of the current monitoring and automation systems calls for deep exploitation of advanced modelling and simulation techniques to define and develop proper Environmental Decision Support Systems. Such systems are expected to extensively support plant managers and operators in taking better, faster and more focused decisions for improving the environmental footprint of production processes, while preserving optimal product quality and smooth process operation. The paper describes a vision from the steel industry on the way in which the above concepts can be implemented in the steel sector through some application examples aimed at improving socio-economic and environmental sustainability of production cycles.
Subject
General Materials Science
Reference67 articles.
1. United Nations,
Transforming our world: the 2030 Agenda for Sustainable Development,
2015, https://sdgs.un.org/2030agenda (last access January 23, 2021)
2. Birat J.-P.,
Malfa E.,
Colla V.,
Thomas J.S.,
SUSTAINABLE steel production for the 2030s: The vision of the European Steel Technology Platform’s Strategic Research Agenda (ESTEP’s SRA), in: Technical Proceedings of the2014 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2014, Vol. 3,
2014, pp. 238–241
3. Conejo A.N.,
Birat J.-P.,
Dutta A.,
A review of the current environmental challenges of the steel industry and its value chain,
J. Environ. Manag. 259, article no. 109782
(2020)
4. Birat J.-P.,
Society, materials, and the environment: The case of steel,
Metals 10(3), art. no. 331
(2020)
5. Birat J.-P.,
The environment and materials, from the standpoints of ethics, social sciences, law and politics,
Materiaux & Techniques 107(1), art. no. 102
(2019)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献