Detailed mechanisms of hydrogen charging and hydrogen stress cracking of steel in liquid ammonia storage

Author:

Crolet J.-L.

Abstract

When the unprecedented environmental cracking of steel in liquid ammonia was collectively studied, its undisputable “anodic character” was taken as the signature of a stress corrosion cracking mechanism, which is effectively the case in aqueous corrosion. Conversely, when the metallurgical precautions proved to be the same as in sour service, this strongly suggested a hydrogen stress cracking mechanism. In aqueous corrosion, however, this can only occur by cathodic hydrogen charging at low potential, and for 50 years, this basic contradiction could never be overcome. Actually, it occurs that the liquid ammonia solvent (NH3) is 50% richer in hydrogen than the water solvent (OH2), so that hydrogen gas can also be produced by a partial oxidisation into ½ N2 + H2. This therefore induces a theoretical possibility of an “anodic” hydrogen charging, or more exactly a protonic cathodic reaction only running at high potential on passive iron in oxygen contaminated ammonia. And once the detrimental potential is achieved through appropriate combinations of oxygen and water traces, the charging process becomes an autonomous oxidation-reduction at the steel surface NH3 → ½ N2 + H2 + (H+ + e)steel. In Part II (Jean-Louis Crolet, Matériaux & Techniques 107, 402, 2019), this new assumption will be successfully confronted to all the factual data from both field and laboratory experience.

Publisher

EDP Sciences

Subject

General Materials Science

Reference62 articles.

1. Stress Corrosion Spectrum

2. Crolet J.-L., Béranger G., Corrosion en milieu aqueux des métaux et alliages, Techniques de l’Ingénieur (1998) Article M 150

3. Stress Corrosion Cracking Behavior of Precracked 18-8 Stainless Steel

4. Crolet J.-L., Le réel n’a pas eu lieu, ou le principe de Don Quichotte, Bulletin de Liaison n° 27, Cefracor, Paris, 2014, pp. 73–81

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3