Metallurgical characteristics of refining slag used for high manganese steel

Author:

Yu Huixiang,Yang Dexin,Li Muming,Pan Ming

Abstract

High manganese steel has excellent mechanical properties, which has garnered much attention. Whereas the research on the refining slag used for high Mn steel is very limited. In this study, the metallurgical characteristics of refining slag for high Mn steel were investigated based on thermodynamic calculation with FactSage 6.3 and slag-metal equilibrium reaction in MgO crucible. The calculated liquid zones of T ≤ 1873 K of CaO-SiO2-Al2O3-8%MgO-5%MnO system are located in the middle region of pseudo-ternary CaO-SiO2-Al2O3. For CaO-SiO2-Al2O3-8%MgO-MnO system, the apparent liquid zone at 1873 K enlarges with MnO content in slag increasing, and moves toward the direction of SiO2 and Al2O3 content increasing. For CaO-SiO2-Al2O3-MgO-MnO system, the liquidus zone shrinks with the basicity increasing, and moves toward the direction of Al2O3 content increasing. The measured MnO content in top slag reacted with high Mn steel was much higher than that reacted with conventional steels. In present experiments, the MnO content was around 5% when CaO-SiO2-Al2O3-MgO slag with basicity of 4 was in equilibrium with high Mn steel (Mn = 10, 20%) at 1873 K. The inclusions in master high Mn steel were mainly MnO type. After reaction with top slag, most inclusions transformed to MnO-SiO2 system and MnO-Al2O3-MgO system, in which the MnO content still shared the majority. Thermodynamic calculations show that SiO2 in top slag can be reduced by [Mn] in steel to supply [Si] under present experimental condition, which subsequently reacts with [O] in steel bath to form SiO2.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Reference32 articles.

1. Choi J., Kim S., Strong potential of commercialized high Mn steel products and process for various applications, Symposium proceedings of the tenth China-Korea joint symposium on advanced steel technology, Shanghai, China, 2018

2. Wang L., Zhong Y., Zhang Y.L., Recent progress of development and application of the new Gen, AHSS in Baosteel, Symposium proceedings of the tenth China-Korea joint symposium on advanced steel technology, Shanghai, China, 2018

3. Aluminum Deoxidation Equilibria in Liquid Iron: Part II. Thermodynamic Modeling

4. Aluminum Deoxidation Equilibria in Liquid Iron: Part I. Experimental

5. Aluminum Deoxidation Equilibria in Liquid Iron: Part III—Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3