Author:
Yuelin Qin,Hao Liu,Yanhua Yang
Abstract
The structure of a quenched blast furnace slag containing 5 mass% TiO2 was investigated via molecular dynamics simulation and Fourier transform infrared spectroscopy. The simulation and experimental results obtained revealed that the slag possesses a depolymerized network of [SiO4] and [AlO4] tetrahedra. At a fixed CaO/SiO2 mass fraction of 1.17 and 12 mass% Al2O3, increasing the amount of MgO decreased the bridging oxygen fraction in the slag system, thus resulting in silicate depolymerization. At a fixed CaO/SiO2 mass fraction of 1.17 and 8 mass% MgO, increasing Al2O3 content increased the bridging oxygen fraction because of the polymerization of aluminate structures. At a fixed 8 mass% MgO and 12 mass% Al2O3, increasing the CaO/SiO2 mass fraction from 1.07 to 1.50 decreased the bridging oxygen fraction because of the depolymerization of silicate and aluminate structures. Analyzing the slag structure via FT-IR spectroscopy verified these behaviors.
Funder
National Natural Science Foundation of China
Chongqing Research Program of Basic Research and Frontier Technology
Research Foundation of Chongqing University of Science & Technology
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献