Effect of heating temperature on oxidation behavior of low density steels with medium manganese content

Author:

Shujia Li,Naibing Lyu,Suhuai Deng,Zhijun Luo,Shixin Xu

Abstract

The high temperature oxidation behavior of Fe–C (0.22%)–Mn (5.3%)–Al (2.5–3.2%)–Si (2.2%) low density steel was studied in the atmosphere of (2%O2 + Ar) by high temperature oxidation simulation tests. The samples were kept at 900 °C–1300 °C for 30 minutes and the morphology and the content distribution of oxide layer in the scale were characterized by scanning electron microscope combined with energy dispersive spectrometer. The results show that: when the holding temperature is below 1150 °C, the oxidized weight gain increases parabolically with time; when the temperature is maintained above 1200 °C, the oxidized weight gain increases linearly. Oxidation activation energy decreases with experimental temperature from 225.31 to 43.4 kJ/mol and due to formation of liquid oxidation products the value of Ea decreases sharply from 1100 °C.For all range of temperature the outer layer of the scale is FeOn–MnO oxide while the scale is mainly SiO2–Al2O3–FeOn–MnO near the matrix. Few variations could be observed for the morphology of scales when the heating temperature ranged from 900 °C to 1100 °C. When the heating temperature is over 1150 °C the liquid Fe2SiO4 and FeO–SiO2–MnO phases in the scale were newly formed, leading to the penetration of liquid oxide scale into the steel, which makes descaling difficult. Therefore, to facilitate the descaling operation before hot rolling, temperature should be controlled below 1150 °C in the reheating furnace.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3