Abstract
Auditory localisation accuracy may be degraded when a head-worn device (HWD), such as a helmet or hearing protector, is used. A computational method is proposed in this study for estimating how horizontal plane localisation is impaired by a HWD through distortions of interaural cues. Head-related impulse responses (HRIRs) of different HWDs were measured with a KEMAR and a binaural auditory model was used to compute interaural cues from HRIR-convolved noise bursts. A shallow neural network (NN) was trained with data from a subjective listening experiment, where horizontal plane localisation was assessed while wearing different HWDs. Interaural cues were used as features to estimate perceived direction and position uncertainty (standard deviation) of a sound source in the horizontal plane with the NN. The NN predicted the position uncertainty of localisation among subjects for a given HWD with an average estimation error of 1°. The obtained results suggest that it is possible to predict the degradation of localisation ability for specific HWDs in the frontal horizontal plane using the method.
Funder
HUMan Optimized xR (HUMOR) Co-innovation project, funded by Business Finland
Subject
Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献