A numerical model of thermoacoustic heat pumping inside a compact cavity

Author:

Fraigneau YannORCID,Weisman CatherineORCID,Baltean-Carlès DianaORCID

Abstract

This paper presents a numerical study of thermoacoustic heat pumping along a stack of solid plates placed inside a compact cavity submitted to an oscillating flow. Velocity and pressure fields are controlled by two acoustic sources: a main “pressure” source monitoring the fluid compression and expansion phases, and a secondary “velocity” source generating the oscillating fluid motion. Numerical simulations are performed with an “in-house” code solving Navier–Stokes equations under a Low Mach number approximation in a two-dimensional geometry. In the linear regime, thermoacoustic heat pumping is correctly described with this model for different sets of parameters such as thermo-physical properties of the stack plates, amplitude of pressure oscillation or of the velocity source, phase shift between both sources. Numerical results on the normalized temperature difference established between the ends of stack plates are in excellent agreement with analytical estimates and experimental results published in the literature. Several configurations corresponding to different thermal conditions applied on the outside wall and an inside separation plate are then considered. If the separation plate is adiabatic, temperature varies linearly along the stack, recovering classical linear theory’s results. If the separation plate is thermally conductive, the model, providing detailed description of local heat and mass transfer, shows that the temperature field becomes fully two-dimensional and thermoacoustic heat pumping is less efficient. The model is well adapted to explore the influence of local heat transfer constraints on the heat pump efficiency and thus well suited for detailed analyses of more complex mechanisms such as buoyancy effects.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Reference37 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3