Decision-making for multi-criteria optimization of process planning

Author:

Delolme Laurent,Antomarchi Anne-Lise,Durieux Séverine,Duc Emmanuel

Abstract

The objective of this work is to develop a methodology for the automatic generation of optimised and innovative machining process planning that enable aeronautical subcontractors to face current productivity and competitiveness issues. A four-step methodology is proposed, allowing the user to obtain optimised machining ranges that respect his know-how and experience and introduce innovation. This methodology is based on a representation of the decisional behaviour of the user in a given situation as well as in the face of the risk of industrialisation and broadens the formalisation of the performance of a process by taking into account other performance criteria other than machining time or overall cost. A genetic algorithm is used to generate optimized process planning. An AHP method is used to represent the decision-making process. The methodology presents the best processes generated and the use of social choice theory enables it to target the most efficient ranges to be implemented, by integrating a risk criterion to the industrialization.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Reference76 articles.

1. Taylor F., On the art of cutting metals, 1907

2. Niebel B., Mechanized process selection for planning new designs, ASME Paper, vol. 737, 1965

3. Knowledge Management in Process Planning

4. Computer-Aided Process Planning: The Present and the Future

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toyota Kata Patterns to Help Teach Process Design: Applying a Project-Based Learning Model;Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations;2022

2. Hybrid Particle Swarm Optimization Algorithm for Process Planning;Mathematics;2020-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3