Author:
Belmiloud Dalila,Lachi Mohammed,Pron Hervé,Bolaers Fabrice,Dron Jean-Paul,Chiementin Xavier,Laggoun Ali
Abstract
Many sources of heat can emanate from the operation of a rotating machine, and one of which is the friction among the different parts of the ball bearings. Over time, these frictions may lead to a tearing of matter of the rings or on the rolling elements that cause some type of degradation by flaking. Flaking, in turn, produces a repetitive shock as a new source of thermal energy. This work proposes a physical model for the study of the thermal heating of a ball bearing during operation. The resolution of the energy balance is achieved by the Nodal method where both the heating due to friction and the heat induced by the passage of the balls on defect are taken into account. The proposed thermal model is validated through an experimental thermal analysis. The obtained results show that the temperature increases in the position of defect ball ring with increasing rotational speed. The same results are obtained for the influence of radial load.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献