Effect of ambient temperature on the formation mechanism of PTFE liner transfer film of spherical plain bearings

Author:

Qiu MingORCID,Tian Kai-WenORCID,Zhang Ya-Tao

Abstract

The relationship between the formation of the transfer film and the tribological properties of the self-lubricating spherical plain bearing was studied at the ambient temperature of 25–145 °C. The results show that the wear, friction coefficient and friction temperature increase of the spherical plain bearings all decreased first and then increased with the increase of the ambient temperature. The general trend is that the bearing has the most excellent anti-friction and wear resistance at 55–85 °C. An increase in ambient temperature will accelerate the formation speed of PTFE transfer film and shorten the running-in period of the bearing, but the ambient temperature above 85 °C will shorten the duration of the PTFE transfer film, thus accelerating the bearing into the degradation period. The transfer film coverage of the liner after wear was characterized, and it was found that the transfer film coverage was the largest when the ambient temperature was 85 °C. The wear form of the bearing is mainly abrasive wear and adhesive wear, and the aramid fiber is more prone to adhesive wear. The anti-friction effect of the bearing is determined by the PTFE transfer film. Elevated ambient temperature can promote the formation of PTFE transfer film and enhance the antifriction effect, but if the ambient temperature is too high, the wear resistance of the PTFE transfer film will be reduced, thus reducing the friction reduction effect.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3