Research and control of a new dual-modulation magnetic gear compound motor for electric vehicles based on a mathematical model and FEA co-simulation

Author:

Wang Jun-GangORCID,Zhang Bin,Qian Li-Qun

Abstract

According to the development of the electric vehicle motor drives, a magnetic gear compound motor with small size, lightweight, non-contact, and high-power has a good development prospect in the new energy electric vehicle industry. A new dual-modulation magnetic gear compound motor (DMFMCM) with high torque, low torque ripple, and high mechanical strength is proposed in the paper. The topology and driving principle of DMFMCM are analyzed in this paper, and the finite elements analysis (FEA) is used to compare and analyze the DMFMCM and the conventional magnetic gear compound motor (CMGCM). Furthermore, the mathematical model of DMFMCM is established to achieve the decoupling of the three-phase voltage or current, and the mathematical model and FEA co-simulation is established to ensure the accuracy of the mathematical model. Finally, according to the principle of SVPWM controlled by id = 0, the paper simulates a PI-adjusted three-phase DMFMCM control system model. The result shows that the DMFMCM controlled by SVPWM has high stability, strong anti-interference ability and good speed regulation performance, thus meeting the development of electric vehicles.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3