Abstract
A method for parameter identification of the magnetorheological damper (MRD) model with an improved firefly algorithm (IFA) is proposed, and a semi-active seat control system with three-degree-of-freedom (3-DOF) is established by combining with a quarter car model to investigate the ride comfort. The dynamic characteristics of the MRD were analyzed by experimental method. Combined with the IFA, the parameters of the MRD phenomenon model were identified, and the forward model of the MR damper was constructed. The semi-active control model of a 3-DOF seat suspension was established. The MRD controller and suspension system controller were designed. The passive control, PID control, and Fuzzy-PID control on the vibration reduction of the semi-active seat suspension were compared and analyzed, under different road excitation. The simulation results show that the semi-active seat suspension controlled by the PID and Fuzzy-PID can effectively reduce the seat acceleration and dynamic stroke, which significantly improve the ride comfort and operation safety compared to the passive seat suspension.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献