Surface photovoltage characterisation of metal halide perovskite on crystalline silicon using Kelvin probe force microscopy and metal-insulator-semiconductor configuration

Author:

Bojar Aleksandra,Regaldo Davide,Alvarez José,Alamarguy David,Donchev Vesselin,Georgiev Stefan,Schulz Philip,Kleider Jean-Paul

Abstract

In this study we analysed halide perovskite films deposited directly on crystalline silicon by means of two set-ups using different operating modes of the surface photovoltage (SPV) methods, i.e., the Kelvin probe force microscopy (KPFM) and the metal-insulator-semiconductor (MIS) technique. The KPFM allowed to visualize surface potential distribution on a microscale while MIS technique allowed to study SPV spectral dependence. We studied wavelength dependent SPV of these samples, which allowed us to effectively vary the probe depth in the sample and discern the contribution from each interface to the overall effect measured under white light illumination. Depending on where the photocarriers are generated, different SPV signals are observed: at the perovskite/Si interface, the signal depends on Si doping type, while at the surface the SPV is always negative indicating downward surface band bending. This is confirmed by analysing SPV phase measured in the AC MIS mode. In addition, distinction between slow and fast processes contributing to measured SPV was possible. It has been observed, that with decreasing the illumination wavelength, the processes causing SPV become slower, which can indicate that high energy photons not only generate electronic photocarriers but can also induce chemical changes with creation of defects or ionic species that also modify the measured SPV.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3