Abstract
This paper deals with the solution of some multi-objective optimal control problems for several PDEs: linear and semilinear elliptic equations and stationary Navier-Stokes systems. Specifically, we look for Nash equilibria associated with standard cost functionals. For linear and semilinear elliptic equations, we prove the existence of equilibria and we deduce related optimality systems. For stationary Navier-Stokes equations, we prove the existence of Nash quasi-equilibria, i.e. solutions to the optimality system. In all cases, we present some iterative algorithms and, in some of them, we establish convergence results. For the existence and characterization of Nash quasi-equilibria in the Navier-Stokes case, we use the formalism of Dubovitskii and Milyutin. In this context, we also present a finite element approximation and we illustrate the techniques with numerical experiments.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献