Multi objective design optimization of graphene piezoresistive MEMS pressure sensor using design of experiment

Author:

Nag Meetu,Pratap BhanuORCID,Kumar Ajay

Abstract

This paper investigates the effect of diaphragm thickness, dimensions of piezoresistors, doping profile and temperature compatibility on sensitivity and non-linearity of graphene MEMS pressure sensor. Taguchi method is used for maximizing the sensitivity and minimizing the nonlinearity of the designed pressure sensor. L27 orthogonal array is utilized for five input factors with three levels. Output voltage is obtained from simulation in COMSOL for different combinations of the input parameters as per L27 orthogonal array. It was found that diaphragm thickness and length of the sensing element shows maximum contribution in increasing the sensitivity of the pressure sensor. Similarly, interaction of diaphragm thickness with piezoresistors thickness and doping concentration shows a major contribution in reducing the non-linearity of the pressure sensor. Other factors such as operating temperature affects both sensitivity and nonlinearity of the pressure sensor with a very low contributing percentage of 0.40% and 2.16%, respectively. Pareto Analysis of variance (ANOVA) was employed to validate the predicated results of the designed pressure sensor. The result indicated that the optimum design shows a sensitivity of 4.10 mV/psi with very low non linearity of 0.1%.

Funder

No funding body

Publisher

EDP Sciences

Subject

Control and Optimization,Modeling and Simulation

Reference31 articles.

1. Ultrasensitive nanowire pressure sensor makes its debut

2. Pant S.S.K.B.D., Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review, no. Tandeske 1991 (2014)

3. A MATLAB program for quick estimation of characteristics of piezoresistive pressure sensors

4. Effect of Process Deviations on Performance of Piezoresistive Pressure Sensors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3