On physics of a hypothetical core disruptive accident in Multipurpose hYbrid Research Reactor for High-tech Applications – MYRRHA

Author:

Petrović Đorđe,Zanetti MatteoORCID,Scheveneels Guy,Rineiski Andrei,Chen Xue-Nong,D’Haeseleer William

Abstract

The sensitivity of the reactivity of a fast reactor core to changes in its geometry and/or fuel relocation calls for particular attention with regard to criticality events. A category of these events, the so-called Core Disruptive Accidents (CDAs), are intensively studied in the safety assessment of Sodium-cooled Fast Reactors (SFRs), and more recently also in the case of other systems. Differences between SFRs and Heavy Liquid Metal Fast Reactors (HLMFRs) are significant and therefore warrant an understanding of phenomena and the development of models specific to HLMFRs. This paper provides a qualitative overview of the physics relevant to the investigation of a CDA in HLMFR, with a particular application to the Multipurpose hYbrid Research Reactor for High-tech Applications – MYRRHA. At first, a core compaction mechanism viable for an HLMFR has been postulated. In what follows, simulation by an already existing severe accidents code, as well as modelling based on fundamental physics and engineering, have been performed. It is demonstrated that, for a linear insertion of reactivity due to hypothetical core compaction, the reversal of reactivity evolution happens due to the Doppler effect and the thermal expansion of core materials. Subsequent expansion by fuel melting terminates the prompt-critical event and makes the system delayed-supercritical. Successive fuel and/or coolant boiling is responsible for the hydrodynamic disassembly of the core and it therefore effectively terminates the transient.

Funder

Multipurpose hYbrid Research Reactor for High-tech Applications - MYRRHA

Publisher

EDP Sciences

Subject

General Medicine

Reference14 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3