Synthesis of DHA (omega-3 fatty acid): FADS2 gene polymorphisms and regulation by PPARα

Author:

Majou Didier

Abstract

In humans, in several biological systems, in particular the nervous system, the FADS2 gene transcribes Δ6-desaturase, which is the rate-limiting enzyme for converting α-linolenic acid into docosahexaenoic acid (an n-3 fatty acid). The peroxisome proliferator-activated receptor α (PPARα) modulates the transcription of FADS2 gene by interacting with a second transcription factor: the retinoid X receptor α (RXRα). These transcription factors take the form of a PPARα-RXRα heterodimer and are modulated by the ligands that modify their respective structures and enable them to bind to the peroxisome proliferator response element (PPRE) located in the promoter region of the FADS2 gene. Free estradiol induces the activation of PPARα via two pathways (i) transcription through genomic action mediated by an estrogen receptor; (ii) a non-genomic effect that allows for phosphorylation and activates PPARα via the ERK1/2-MAPK pathway. Phosphorylation is an on/off switch for PPARα transcription activity. Since Δ6-desaturase expression is retro-inhibited by free intracellular DHA in a dose-dependent manner, this position paper proposes an original hypothesis: if DHA simultaneously binds to both phosphorylated PPARα and RXRα, the resulting DHA-PPARαP-RXRα-DHA heterodimer represses FADS2 gene via PPRE. The retinoic acids-RARα-RXRα-DHA heterodimer would not dissociate from corepressors and would prevent coactivators from binding to FADS2. We speculate that SNPs, which are mostly located on PPRE, modulate the binding affinities of DHA-PPARαP-RXRα-DHA heterodimer to PPRE. The DHA-PPARαP-RXRα-DHA heterodimer’s greater affinity for PPRE results in a decreased production of D6D and DHA. FADS2 promoter polymorphism would increase the competition between DHA and other ligands, in accordance with their concentrations and affinities.

Publisher

EDP Sciences

Subject

Agronomy and Crop Science,Biochemistry,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3