Experimental and Computational Analysis of Model–Support Interference in Low-Speed Wind-Tunnel Testing of Fuselage-Boundary-Layer Ingestion

Author:

Della Corte Biagio,Perpignan André A.V.,van Sluis Martijn,Gangoli Rao Arvind

Abstract

Junction flow caused by the aerodynamic interaction between a wind-tunnel model and the support structure can largely influence the flowfield and hence the experimental results. This paper discusses a combined numerical and experimental study which was carried out to mitigate the model–support interference in a wind-tunnel test setup for the study of fuselage boundary-layer ingestion. The setup featured an axisymmetric fuselage mounted through a support beam, covered by a wing-shaped fairing. The junction flow appearing at the fuselage–fairing connection produced undesired flow distortions at the fuselage aft section, due to the formation of an horseshoe vortex structure at the fairing leading edge. Numerical and experimental analysis were performed with the aim of reducing the distortion intensity by improving the fairing design. Results show that modifying the leading-edge shape of the fairing effectively decreased the flowfield distortions. Moreover, the addition of a dummy fairing diametrically opposed to the first one was found to be beneficial due to the enhancement of the configuration symmetry.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3