Assessment of hydrogen embrittlement susceptibility of an Al-Cu-Mg alloy in humid air

Author:

Manaka Toshiaki,Suzuki Takahiro,Hiyama Keisuke,Kobayashi Junya,Kuromoto Shigeru,Itoh Goroh

Abstract

In the present study, we investigated the hydrogen embrittlement susceptibility of Al-4%Cu-1.5%Mg alloys subjected to several heat treatments by means of SSRT tensile test and humid gas stress corrosion cracking(HG-SCC) test. For SSRT tensile test, the tensile test pieces were cut from cold-rolled sheets of 1mm thickness. The test pieces were solution-treated at 500 °C for 1h, water-quenched and aged at 140oC for 72h or 360h. SSRT tensile test was performed in two environments, humid air (HA) and dry nitrogen gas (DNG) at a strain rate of 1.39×10-6s-1. Fracture surfaces were observed with a scanning electron microscopy(SEM). For HG-SCC test, compact tension(CT) test pieces were cut from hot-rolled plate of 6mm thickness. The CT test pieces were solution-treated, water-quenched and aged at 190 °C for 9h, 50°C for 96h or 140°C for 72h. HG-SCC test was carried out based on High Pressure Institute of Japan standards; HPIS E103:2018. The pre-cracked CT specimens with stress loading were kept for 90 days in two environments, HA and DNG. After 90 days, in order to observe whether cracks propagated due to HG-SCC, the specimens were loaded up to fracture rapidly, followed by SEM observation. Tensile properties obtained by SSRT tensile tests were almost the same in two environments. Also, fracture surfaces were not affected by test environments. Moreover, in HG-SCC tests, crack propagation was not observed at each test conditions. Therefore, Al-4%Cu-1.5%Mg alloy had high-resistance to hydrogen embrittlement.

Publisher

EDP Sciences

Subject

General Medicine

Reference12 articles.

1. Burleigh T. D., Corros. Sci. 47, 89–98 (1991)

2. Ichitani K., Koyama K., Review Furukawa-Sky, 2028 (2009)

3. Osaki S., Ikeda J., Kinoshita K., Sasaki Y., J.JILM 56, 721–727 (2006)

4. Manaka T., Itoh G., J.JILM 67, 67–71 (2017)

5. Manaka T., Todai M., Wada M., J.JILM 68, 615–620 (2018)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3